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We study the exam problem (EE 301 MT2, Fall2013iti4jome detail to illustrate some
connections between Fourier series, Parseval'saeland RMS values.
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Find the Fourier series coefficients of oA £ A
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b) The signalx(t) =sin(272t) is the input to dull-wave rectifiercircuit with the following
X(t), x(t)=0
-x(t), other
Express the Fourier series coefficientsxqf, t G }Yerms of the Fourier series coefficients found

input-output relationshipx,, (t) =|x(t)| ={
in part (a). Note: You can call coefficients in pafa), a, , and solve parfb) usinga, ’s )

Solution: (The solution is more detailed than it needs to be.)
a) The signal x(t) is periodic withT =1. The Fourier series coefficients can be

.
found through the relation, :?1[ X(tye’“'dt wherew, = % =277 rad/sec.
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At this point, it should be noted th&t index of the sequence, is an integer and

therefore,e™ " = (-1)*. Substitutinge ™ = (-1)* into the last relation, we can get the

following:
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It appears from the last relation that o= +1, we havea, = 0 This is not true, since
the equation (**) given above shows that the defiag values are only valid when
k # £1. We need to examine the casekaf +1 separately.

From the equation (*), given above, we can expréiss coefficient a, as
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a, = 1 (e‘jz”‘k‘l)t — gt )l dt= 1 j (1—e‘j“”t )dt =1--1 Similarly, we can
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show thata_, = i Given all, the FS coefficients can be written as:
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Now, we can write the Fourier series expansiormefttalf-wave rectified sinusoidal
signal:

Xpjarr (1) = Z @ejwokt
k=—00

= 4_1] (ejwot _ e—ont )+ k:i;w’q(ejwokt

keven

= 4%_(2] sin(ayt)) +a, + i a, (er +eian)
k=2,
keven

_ sin(w,t) +1 +E i cos(, kt)
2 Vi ﬂk=2, 1_ k2

keven

It is always useful (and fun) to verify the expamswith a few lines of Matlab code:

t=linspace(-2.5,2.5,1024);
FSterms=10;

T=1,

wO=2*pi/T,;

out = 1/pi + 1/2*sin(w0*t); %First few terms

for k=2:2:FSterms, %Remaining terms in the series
ak = 1/pi/(1-k"2);
out = out + ak*2*cos(w0*k*t);

end;

plot(t,sin(w0*t),"-."); hold all
plot(t,out); hold off;
legend('Sine wave','Half wave rectified);
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Figure: The plot generated by the given Matlab code
b) If X, (1) - a,, the full wave rectified sinusoid signal can be espegl as follows

Xt (1) = X () + Xy (1 —1/2) = Z a e’ + Z a el = Za (L+e komz)ehen
= = k=—00

So,

Xea = Y8, @+e ek = Y 25 ehen

k=—00 k=-0c0
keven

We should be a little careful in this calculatismce the period ok, (t) is 1 second
while the period of full wave rectified sine sigmall/2. ForT, =1/2, the corresponding

fundamentafrequency isw, = T =4
0

When writing

2a, , forkeven
; (1)
, else

Xy () = ZZa(e'“" with coefficientsc, = 0

:—00
keven



it is implicitly assumed thax_, (t) is also periodic with 1 second. It is indeed trut t
Xe (t) is periodic with 1 second, but this is not the fameéntal periodT, = 1/2) and 27
is not the fundamental frequencsg(= 477 ). 2n is equal to half of the fundamental
frequency ; thereforeg, 's are not the FS coefficients af , t ( By substitutingk = 2k’
in (1), one can easily find the FS coefficiemtsof x.,, (t) :

ull

XFuII (t) = Zzake]kzn _ZzaQKe]kMI = Zbkejk4m1 bk :2a2k1 Dk (2)

k=—c0 k=—c0 k=—0c0
k even

[Note that for any periodic signad, (t) with fundamental frequencyy,, one can express
X, (t) as the sum of complex sinusoidals at all frequesnthat are multiples afy / L,

for L=2, 3, ...; however, corresponding coefficients, are all zero whenevée# mL
(mis an integer). Above example corresponds $02.

In order to preserve the uniqueness of the FS septationx, (t) -~ a,, and to safely

talk about thé'th harmonic power ofk,(t) looking atla|’ +|a_*; only the FS coeffi-
cients in the expansion with respect to “complexisoidals at all multiples of frequen-
cies &, Wwherew, is the fundamental period” are called the FS caiefits of x  (t) .]

In order to obtain the FS expansion in degi§ found in part (a) can be substituted
into (2).

X (1) = Zbkejkm
k=—c0

= Z:Z‘?‘zkejmkt

k=—0c0

]4nkt

_14k2

n{l 221 K 2cos(4;'rkt)]

It should be noted that the last relation is thevemtional expansion ok, (t) and

12K corresponds to the coefficient of tkith harmonic @'**). We can use

Matlab to verify our findings.



t=linspace(-2.5,2.5,1024);
FSterms=10;

out = 2/pi; %DC term

for k=1:FSterms, %Remaining terms in the series
ak = 4/pi/(1-4*k"2);
out = out + ak*cos(4*pi*k*t);

end,

plot(t,sin(w0*t),"-."); hold all
plot(t,out); hold off;
legend('Sine wave','Full wave rectified');
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Figure: The plot generated by the given Matlab code
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Parseval’s Relation, RMS Values and Harmonic Series
Let’s remember the definition for the RMS valueagferiodic waveform:

Xepys = /%:[[x(t)]zdt .

In the terminology of electrical engineering(t) is considered to be the periodic
waveform representing either current or voltagaroR Q resistor. Then, the average

2
power dissipated over the resistor becomeg,; = @ or Py = R[i RMS]Z.

Some of the typical periodic waveforms utilizedcincuit applications are given in
figure below. (This figure is provided to refrestranemory on RMS calculations.)
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Figure: Some periodic waveforms typically utilizeccircuit applications

We know that the square wave with the amplitude & kthe RMS value of A,

sinusoidal waveform has the RMS value% and the sawtooth waveform has the

A .. 1 1
value of — . The coefficient§ 1L, —,—
J3 { NEINE

are called the RMS scaling factors.

} scaling the amplitude in this description

In the rest of this section, we calculate the RMS&lisg factor for the half wave
rectified sinusoidal signal and establish a conoravith the Parseval’s relation.



We start with the calculation of the RMS value.shiould be clear thak,,, (t)
provides half the average power of a sinusoidalaijghence its scaling factor should

1 1 1 . . ) . .
—Xx—==. We can easily verify this guess with the follogin
22 2 y y g v
1 1
calculationX,; gus = _[[sm(Znt)]zdt j (L= COS@W) dt—E (Very similarly,
O

the full wave rectified signal has the RMS scaliactor ofi.)

NG

. 1 S :
Parseval’s relation states th%tj |x(t)|2dt = Z|ak|2 . Given our refreshed knowledge
0 k=0

on the RMS values, we can also write the Parsevaidation as

__[|X(t)| dt= Z|ak| _(XRMS) .

k=—00

Half-wave rectified signal: We have previously found the RMS value of the unit
amplitude half-wave rectified signal a;s In addition, we have also found the FS

coefficients of this signal as

! k:even
al—kzj
a, = -jl4 k=1 |
jl4 k=-1
0 k : other

T 0o
Then Parseval's relation_%.[|x(t)|2dt: >la|” = (%eus)® gives us the following
0 k=-00

identity:
sl =g
The summation given above can be rewritten asvslio
> 1
adf* +daf +2 3 fa = .
= A

keven

Substituting |a,| :%|a1| :%, we reach Zw:|ak|2 ::—é—i. The same relation can
k=2

n.2

keven

also be written as — Z - k )2 %—% and simplified to the following,

keven



@ 1 m7-8
kzzl 1-k%? 16

keven

and the summation on the left hand side can bepaotty

expressed as:
© 1 _m*-8
&~ (1-4k?)? 16

The end result of this calculation is the summatidentity given above. These
identities involving reciprocal of integer powerg @ifficult to prove with elementary
means. Therefore, we can not provide any othernaegts for the validity of this
identity; but we can always use Matlab to numelycakamine the correctness of the
this identity:

>> kvec=1:10;
>> partial_sum = sum(1./(1-4*kvec."2)."2)

partial_sum =
0.1168
>> (pi"2-8)/16

ans =

0.1169

It seems that everything is in order.



