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We study the exam problem (EE 301 MT2, Fall2013-14) in some detail to illustrate some 
connections between Fourier series, Parseval’s relation and RMS values.  
 
Q1. (20 pts)  
a) The signal ) 2sin()( ttx π=  is the 
input to a half-wave rectifier circuit with 
the following input-output relationship: 
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Find the Fourier series coefficients of 

).(txhalf   (Hint: You may use Euler’s 

relation to express )2sin( tπ .) 
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b) The signal ) 2sin()( ttx π=  is the input to a full-wave rectifier circuit with the following 

input-output relationship:  




−
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==
othertx
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txtx full ),(

0)(),(   
)()( .  

Express the Fourier series coefficients of )(tx full  in terms of the Fourier series coefficients found 

in part (a). (Note: You can call coefficients in part (a), ka , and solve part (b) using ka ’s .)  
 

 

Solution: (The solution is more detailed than it needs to be.) 

 

a) The signal )(tx  is periodic with 1=T . The Fourier series coefficients can be 

found through the relation ∫=
T

tjk
k dtetx

T
a o

0

)(
1 ω  where ππω 2

2 ==
To   rad/sec.  
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At this point, it should be noted that k  index of the sequence ka  is an integer and 

therefore, kkje )1(−=− π . Substituting kkje )1(−=− π  into the last relation, we can get the 
following:  
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It appears from the last relation that for 1±=k , we have 0=ka . This is not true, since 

the equation (**) given above shows that the derived ka  values are only valid when 

1±≠k . We need to examine the cases of 1±=k  separately.   
 
From the equation (*), given above, we can express the coefficient 1a  as 
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show that 
41

j
a =− . Given all, the FS coefficients can be written as:  
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Now, we can write the Fourier series expansion of the half-wave rectified sinusoidal 
signal: 
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It is always useful (and fun) to verify the expansion with a few lines of Matlab code:  
 
t=linspace(-2.5,2.5,1024); 
FSterms=10; 
T=1; 
w0=2*pi/T;  
 
out = 1/pi + 1/2*sin(w0*t);  %First few terms 
 
for k=2:2:FSterms, %Remaining terms in the series 
    ak = 1/pi/(1-k^2);  
    out = out + ak*2*cos(w0*k*t);  
end; 
 
plot(t,sin(w0*t),'-.'); hold all 
plot(t,out); hold off; 
legend('Sine wave','Half wave rectified'); 
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Figure: The plot generated by the given Matlab code 

 
b) If kHalf atx ↔)( , the full wave rectified sinusoid signal can be expressed as follows. 
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We should be a little careful in this calculation, since the period of )(txHalf  is 1 second, 

while the period of full wave rectified sine signal is 1/2. For 2/10 =T , the corresponding 

fundamental frequency is ππω 4
2

0
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T
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When writing 
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it is implicitly assumed that )(txFull  is also periodic with 1 second. It is indeed true that 

)(txFull  is periodic with 1 second, but this is not the fundamental period ( 2/10 =T ) and π2  

is not the fundamental frequency ( πω 40 =  ).  π2  is equal to half of the fundamental 

frequency ; therefore, kc ’s are not the FS coefficients of )(txFull . By substituting kk ′= 2  

in (1), one can easily find the FS coefficients bk  of )(txFull : 
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[Note that for any periodic signal )(txp  with fundamental frequency 0ω , one can express 

)(txp  as the sum of complex sinusoidals at all frequencies that are multiples of L/0ω , 

for L=2, 3, …; however, corresponding coefficients, kc , are all zero whenever mLk ≠  

(m is an integer). Above example corresponds to L = 2.  
 
In order to preserve the uniqueness of the FS representation kp atx ↔)( , and to safely 

talk about the k’th harmonic power of )(txp  looking at ak

2
+ a−k

2
; only the FS coeffi-

cients in the expansion with respect to “complex sinusoidals at all multiples of  frequen-

cies 0ω , where 0ω  is the fundamental period” are called the FS coefficients of )(txp .] 

 In order to obtain the FS expansion in detail,ak’s found in part (a) can be substituted  

into (2). 
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It should be noted that the last relation is the conventional expansion of )(txFull  and 
2/π

1− 4k2  corresponds to the coefficient of the k’th harmonic ( ktje π4 ).  We can use  

Matlab to verify our findings.  
 
 
 



 
 

t=linspace(-2.5,2.5,1024); 
FSterms=10; 
 
out = 2/pi; %DC term  
 
for k=1:FSterms, %Remaining terms in the series 
    ak = 4/pi/(1-4*k^2);  
    out = out + ak*cos(4*pi*k*t);  
end; 
 
plot(t,sin(w0*t),'-.'); hold all 
plot(t,out); hold off; 
legend('Sine wave','Full wave rectified'); 
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Figure: The plot generated by the given Matlab code 

 
 



Parseval’s Relation, RMS Values and Harmonic Series: 
 
Let’s remember the definition for the RMS value of a periodic waveform:  

[ ]∫=
T

RMS dttx
T

x
0

2)(
1

. 

In the terminology of electrical engineering, )(tx  is considered to be the periodic 
waveform representing either current or voltage of an RΩ resistor. Then, the average 

power dissipated over the resistor becomes,  
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Some of the typical periodic waveforms utilized in circuit applications are given in 
figure below. (This figure is provided to refresh our memory on RMS calculations.) 
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Figure: Some periodic waveforms typically utilized in circuit applications 

 
 
We know that the square wave with the amplitude A has the RMS value of A; 

sinusoidal waveform has the RMS value of 
2

A
 and the sawtooth waveform has the 

value of 
3

A
. The coefficients 
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,1  scaling the amplitude in this description 

are called the RMS scaling factors.  
 
In the rest of this section, we calculate the RMS scaling factor for the half wave 
rectified sinusoidal signal and establish a connection with the Parseval’s relation.  



 
We start with the calculation of the RMS value. It should be clear that )(txHalf  

provides half the average power of a sinusoidal signal; hence its scaling factor should 

be 
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Parseval’s relation states that ∑∫
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on the RMS values, we can also write the Parseval’s relation as 
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Half-wave rectified signal: We have previously found the RMS value of the unit 

amplitude half-wave rectified signal as 
2

1
. In addition, we have also found the FS 

coefficients of this signal as  
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Then Parseval’s relation ( )22
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The end result of this calculation is the summation identity given above. These 
identities involving reciprocal of integer powers are difficult to prove with elementary 
means. Therefore, we can not provide any other arguments for the validity of this 
identity; but we can always use Matlab to numerically examine the correctness of the 
this identity:  
 

>> kvec=1:10; 
>> partial_sum = sum(1./(1-4*kvec.^2).^2) 
 
partial_sum = 
 
    0.1168 
 
>> (pi^2-8)/16 
 
ans = 
 
    0.1169 

 
It seems that everything is in order.  

 
 
 

 


